메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회 2002년 춘계학술대회논문집
발행연도
2002.6
수록면
454 - 460 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper considers that advanced planning and scheduling (APS) in manufacturing and the efficient purchasing where each customer order has its due date and multi-suppliers exit. We present a Make-To-Order Supply Chan (MTOSC) model of efficient purchasing process from multi-suppliers and APS with outsourcing in a supply chain, which requires the absolute due date and minimized total cost.
Our research has included two states. One is for efficient purchasing from suppliers: (a) selection of suppliers for required parts; (b) optimum part lead-time of selected suppliers. Supplier selection process has received considerable attention in the businessmanagement literature. Determining suitable suppliers in the supply chain has become a key strategic consideration. However, the nature of these decisions usually is complex and unstructured. These influence factors can be divided into quantitative and
qualitative factors. In the first level, linguistic values are used to assess the ratings for the qualitative factors such as profitability, relationship closeness and quality. In the second level a MTOSC model determines the solutions (supplier selection and order quantity) by considering quantitative factors such as
part unit price, supplier's lead-time, and storage cost, etc.
The other is for APS: (a) selection of the best machine for each operation; (b) deciding sequence of operations; (c) picking out the operations to be outsourcing; and (d) minimizing makespan under the
due date of each customer's order. To solve the model, a genetic algorithm (GA)-based heuristic approach is developed. From the numerical experiments, GAbased approach could efficiently solve the proposed model, and show the best process plan and schedule for all customers' orders.

목차

Abstract

1. Introduction

2. Problem definition

3. Sub-methodologies for MTOSC model

4. MTOSC model

5. Conclusions

References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-013774911