메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
공간 데이타베이스에서 효율적으로 공간 질의를 처리하기 위해서는 클러스터링을 통해서 디스크 접근 비용을 줄이는 것이 필요하다. 이 논문은 공간 지역성에 기반을 둔 여러 가지 클러스터링 알고리즘을 제안하고 실험을 통해 제안한 클러스터링 알고리즘의 성능을 평가하였다. 이 논문에서 제안하는 클러스터링 알고리즘은 객체 클러스터링 알고리즘과 셀 클러스터링 알고리즘으로 나뉜다. 객체 클러스터링 알고리즘은 정규 분할 공간 색인 구조에서 영역 분할 선과 겹치는 객체들의 저장 위치를 결정하는데 사용 된다. 셀 클러스터링 알고리즘은 클러스터를 만들기 위해 정규 분할된 영역들을 그룹화하는데 사용된다.
실험 결과 객체 클러스터링 알고리즘에서는 객체간의 거리를 이용한 경우에 대체로 좋은 성능을 보였지만, 버퍼 크기가 커지거나 데이타가 희박한 영역의 질의에 있어서는 알고리즘 별로 성능의 차이는 거의 없었다. 셀 클러스터링 알고리즘에 대한 실험에서는 이 논문에서 제안한 클러스터링 알고리즘은 N-순서화 기법에 의한 클러스터링 알고리즘에 비해 우수한 성능을 보였다. 특히 중복 참조도를 이용한 경우와 셀의 무게 중심간 거리를 이용한 방법이 가장 우수하였다.

목차

요약

Abstract

1. 서론

2. 관련연구

3. 고정 그리드 파일을 이용한 공간 객체 저장 구조

4. 객체 클러스터링

5. 셀 클러스터링

6. 실험 평가

7. 결론 및 향후 연구과제

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017814961