메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
최대 엔트로피 모델은 자연언어를 모델링하기 위한 좋은 방법이다. 하지만, 최대 엔트로피 모델을 전치사구 접속과 같은 실제 언어 문제에 적용할 때, 자질 선택과 계산 복잡도의 두 가지 문제가 발생한다. 본 논문에서는, 이런 문제와 자연언어 자원에 존재하는 불균형 데이터 문제를 해결하기 위한 최대 엔트로피 부스팅 모델(maximum entropy boosting model)을 제시하고, 이를 영어의 전치사구 접속과 품사 결정 모호성 해소에 적용한다. Wall Street Journal 말뭉치에 대한 실험 결과, 문제의 모델링에 아주 작은 노력을 들였음에도 불구하고, 전치사구 접속 문제에 대해 84.3%의 정확도와 품사 결정 문제에 대해 96.78%의 정확도를 보여 지금까지 알려진 최고의 성능과 비슷한 결과를 보였다.

목차

요약

Abstract

1. 서론

2. 최대 엔트로피 부스팅 모델

3. 문제 정의

4. 실험

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017872329