메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제7권 제6호
발행연도
2007.6
수록면
1 - 8 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
전자상거래에서 많은 아이템 중에 사용자에게 적합한 아이템을 추천하기 위해서는 많은 시간과 노력이 소요된다. 그러므로 추천 시스템이 사용자들을 대신하여 적합한 아이템을 추천해줄 수 있다면 만족을 얻을 수 있다. 본 논문에서는 정확성과 확장성을 향상시키기 위해서 협력적 필터링에서 연관관계 군집 분할방법을 제안하였다. 평가한 데이터를 사용하여 연관 아이템간의 향상도를 산출하고 연관관계 군집의 효율성을 높이기 위해서 아이템으로 구성된 노드 군집을 분할하였다. 이는 군집들 중 하나의 아이템만이 연관성을 달리하고, 나머지 아이템들은 군집의 연관성이 충족되어진다면 결합하는 방법이다. 성능을 평가하기 위해서 MovieLens 데이터 집합에서 K-means와 EM에 의한 군집과 비교 평가하였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 연관관계 군집 분할 방법
4. 성능평가
5. 결론
참고문헌
저자소개

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-004-016772106