메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (10)

초록· 키워드

오류제보하기
본 논문은 비선형 시스템의 퍼지모델을 위해 정보 granules 기반 퍼지 추론 시스템의 새로운 설계 및 이의 최적화를 제시한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 일반적으로, 정보 granules는 근접성, 유사성 또는 기능성 등에 인하여 서로 결합되는 요소(특히, 수치 데이터)의 실체이다. 제안된 퍼지 모델은 정보 데이터의 특성을 살리기 위해 HCM 클러스터링 방법에 의해 전반부/후반부 구조 및 파라미터 동정을 시행한다. 두 가지 형태의 퍼지 추론 방법은 간략 추론과 선형추론에 의해 수행되며 삼각형 멤버쉽 함수를 사용한다. 구축된 정보 granule 기반 퍼지 모델은 유전자 알고리즘을 이용하여 전반부 파라미터를 최적으로 동정한다. 제안된 비선형 모델의 성능평가는 수치적인 예를 통해 비교 평가한다.

목차

요약
1. 서론
2. 퍼지 추론 시스템의 새로운 설계
3. 퍼지 추론 시스템의 최적화
4. 실험 테이터를 통한 결과 고찰
5. 결론
감사의 글
6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015007935