메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제19권 제6호
발행연도
2009.12
수록면
796 - 801 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
복잡한 진단이나 예측 모델은 계산이 복잡하고 추론 과정을 해석하기 어렵기 때문에 임상현장에서 널리 사용되지 않고있다. 의료 종사자들은 이러한 복잡한 모델 대신에, 복잡한 함수를 컴퓨터 등을 사용하지 않고도 쉽게 계산할 수 있도록 수치 관계를 그래픽으로 표현한 노모그램을 사용해 왔다. 의료분야에서 질병의 진단과 질병예후의 예측은 매우 주요한 관심사이다. 노모그램은 증상검사결과치료이력질병의 진단 결과 등의 속성을 포함한 임상 데이터들로부터 만들어진다. 노모그램을 만들 때는 가용한 여러 가지 속성 중에서 효과적인 것들을 찾아야 하고, 경우에 따라서는 속성에 대한 파라미터를 함께 결정해야 한다. 이 논문에서는 효과적인 속성과 파라미터를 선택하기 위해 유전자 알고리즘을 사용하고, 노모그램을 생성하기 위해 나이브 베이지언 기법을 사용하는 방법을 제안한다. 또한 제안한 방법을 실제 임상 데이터에 적용한 결과를 보인다.

목차

요약
Abstract
1. 서론
2. 노모그램
3. 나이브 베이지언 기법을 이용한 노모그램 구축
4. 유전자 알고리즘 기반의 속성 및 파라미터 선택
5. 노모그램 생성 방법
6. 적용 사례
7. 결론
참고문헌
저자소개

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-028-002651239