메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김은희 (한국과학기술원) 표신지 (한국과학기술원) 김문철 (한국과학기술원)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제17권 제2호
발행연도
2012.3
수록면
270 - 283 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
다채널 TV, IPTV 및 Smart TV 서비스의 등장으로 인해 수많은 방송 채널과 방대한 TV 프로그램 콘텐츠가 시청자 단말로 제공됨으로써 시청자들은 자신이 원하는 콘텐츠를 쉽게 찾고 소비하는 것이 어려운 TV 시청 환경을 맞게 되었다. 따라서 TV 사용자들에게 자신이 선호하는 콘텐츠를 자동 추천해 줌으로써 원하는 콘텐츠로의 접근성을 증대시키는 것은 미래의 지능형 TV 서비스에 있어서 주요한 이슈이다. 이에 본 논문에서는 사용자의 선호 취향과 대중의 선호취향을 모두 고려한 협업필터링 개념의 통계적 기계학습 기반 TV 프로그램 추천 모델을 제시한다. 이를 위해 시청한 TV 콘텐츠에 대한 선호 토픽을 사용자의 시청 선호도로 보고, 최근 널리 활용되고 있는 LDA(Latent Dirichlet Allocation)모델을 TV 프로그램 추천 모델에 적용하였다. LDA 기반 TV 프로그램 추천 성능을 개선하기 위해 본 논문에서는 TV시청 이용내역 데이터를 기반으로, TV 사용자들의 관심 토픽을 은닉 변수로 하고, TV 사용자들의 관심 토픽에 대한 다양성을 반영하기 위해 은닉 변수의 확률분포 특성을 비대칭 디리클레(Dirichlet) 분포로 모형화하여 실험에 적용하였다. 제안된 LDA 기반 TV 프로그램 자동 추천 방법의 성능을 검증하기 위해, 유사 시청 특성을 갖는 사용자 그룹에 대해 상위 5개의 TV 프로그램을 일주일 단위로 추천하였을 경우 평균 66.5%, 2개월 단위의 추천에 대해서는 평균 77.9%의 precision 추천 성능을 확인할 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안 추천 시스템
Ⅳ. LDA 기반 제안 추천 모델
Ⅴ. 실험 결과
Ⅵ. 결론
참고문헌
저자소개

참고문헌 (16)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-568-001742185