메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김호준 (한동대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제22권 제3호
발행연도
2012.6
수록면
319 - 327 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 착용식 추적장치나 표식 등의 보조 도구를 사용하지 않는 환경의 동영상 데이터로부터 수화 패턴을 인식하는 방법론에 관하여 고찰한다. 시스템 설계 및 구현에 관한 주제로서 특징점의 추출기법, 특징데이터의 표현기법 및 패턴 분류기법에 관한 방법론을 제시하고 그 유용성을 고찰한다. 일련의 동영상으로 표현되는 수화패턴에 대하여 특징점의 공간적 위치에 대한 변이 뿐만아니라 시간차원의 변화를 고려한 특징데이터의 표현방법을 제시하며, 방대한 데이터에 의한 분류기의 크기 문제와 계산량의 문제를 개선하기 위하여 효과적으로 특징수를 줄일 수 있는 특징추출 방법을 소개한다. 패턴 분류과정에서 점진적 학습(incremental learning)이 가능한 신경망 모델을 제시하고 그 동작특성 및 학습효과를 분석한다. 또한 학습된 분류모델로부터 특징과 패턴 클래스 간의 상대적 연관성 척도를 정의하고, 이로부터 효과적인 특징을 선별하여 성능저하 없이 분류기의 규모를 최적화 할 수 있음을 보인다. 제안된 내용에 대하여 여섯 가지 수화패턴을 대상으로 적용한 실험을 통하여 유용성을 평가한다.

목차

요약
Abstract
1. 서론
2. 배경 연구
3. 수화 패턴에 대한 특징표현
4. CNN모델을 사용한 특징지도 생성
5. 하이퍼박스 기반의 패턴 분류 모델
6. 특징 분석 기법
7. 실험 결과
8. 결론
참고문헌
저자소개

참고문헌 (13)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-028-003538404