메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sungmin Park (백석대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제40권 제1호
발행연도
2014.2
수록면
84 - 99 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, determinant input-output variables are identified for calculating Data Envelopment Analysis (DEA) efficiency scores relating to evaluating the efficiency of government-sponsored research and development (R&D) projects. In particular, this study proposes a systematic framework of design and analysis of experiments, called “all possible DEAs”, for pinpointing DEA determinant input-output variables. In addition to correlation analyses, two modified measures of time series analysis are developed in order to check the similarities between a DEA complete data structure (CDS) versus the rest of incomplete data structures (IDSs). In this empirical analysis, a few DEA determinant input-output variables are found to be associated with a typical public R&D performance evaluation logic model, especially oriented to a mid- and long-term performance perspective. Among four variables, only two determinants are identified : “R&D manpower” (χ₂) and “Sales revenue” (y₁). However, it should be pointed out that the input variable “R&D funds” (χ₁) is insignificant for calculating DEA efficiency score even if it is a critical input for measuring efficiency of a government-sponsored R&D project from a practical point of view a priori. In this context, if practitioners’ top priority is to see the efficiency between “R&D funds” (χ₁) and “Sales revenue” (y₁), the DEA efficiency score cannot properly meet their expectations. Therefore, meticulous attention is required when using the DEA application for public R&D performance evaluation, considering that discrepancies can occur between practitioners’ expectations and DEA efficiency scores.

목차

1. Introduction
2. Background and Theory
3. Design of Experiments
4. Analysis of Experiments
5. Practical Implications and Conclusions
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-001128258