메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강중순 (Ulsan College)
저널정보
한국소음진동공학회 한국소음진동공학회논문집 한국소음진동공학회논문집 제24권 제9호
발행연도
2014.9
수록면
675 - 681 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a fault diagnosis system for an induction motor. This system uses empirical mode decomposition(EMD) to extract fault signatures and multi-layer perceptron(MLP) neural network to facilitate an accurate fault diagnosis. EMD can not only decompose a signal adaptively but also provide intrinsic mode functions(IMFs) containing natural oscillatory modes of the signal. However, every IMF does not represent fault signature, an IMF selection algorithm based on harmonics and their energy of each IMF is proposed. The selected IMFs are utilized for fault classification using MLP and this system shows approximately 98 % diagnosis accuracy for the fault vibration signal of the induction motor.

목차

ABSTRACT
1. 서론
2. 배경이론
3. 제안하는 방법
4. 실험 및 결과
5. 결론
References

참고문헌 (24)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-530-002558147