메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박소영 (서울대학교) 이민수 (서울대학교) 송진우 (서울대학교) 박찬국 (서울대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제21권 제6호
발행연도
2015.6
수록면
547 - 552 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, an ARS-EKF based motion counting algorithm for repetitive exercises such as calisthenics is proposed using a smartwatch. Raw sensor signals from accelerometers and gyroscopes are widely used for conventional smartwatch counting algorithms based on pattern recognition. However, generated features from raw data are not intuitive to reflect the movement of motions. The proposed motion counter algorithm is composed of navigation based feature generation and counting with error correction. The candidate features for each activity are velocity and attitude calculated through an ARS-EKF algorithm. In order to select those features which reveal the characteristics of each motion, an exercise frame from the initial sensor frame is introduced. Counting processes are basically based on the zero crossing method, and misdetected counts are eliminated via simple classification algorithms considering the frequency of the counted motions. Experimental results show that the proposed algorithm efficiently and accurately counts the number of exercises.

목차

Abstract
Ⅰ. 서론
Ⅱ. 자세추정시스템-확장칼만필터 기반 특징점 생성
Ⅲ. 카운트 알고리즘
Ⅳ. 성능평가 및 분석
Ⅴ. 결론
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001521261