메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이유진 (서강대학교) 낭종호 (서강대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.42 No.6
발행연도
2015.6
수록면
699 - 706 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 이미지 컨텐츠에 쉽게 접근할 수 있는 인터넷 환경과 이미지 편집 기술들의 보급으로 근-복사 이미지가 폭발적으로 증가하면서 관련 연구가 활발하게 이루어지고 있다. 그러나 근-복사 이미지 검출 방법으로 주로 쓰이는 BoF(Bag-of-Feature)는 고차원의 지역 특징을 저차원으로 근사화하는 양자화과정에서 서로 다른 특징들을 같다고 하거나 같은 특징을 다르다고 하는 한계가 발생할 수 있으므로 이를 극복하기 위한 후-검증 방법이 필요하다. 본 논문에서는 BoF의 후-검증 방법으로 SIFT(Scale Invariant Feature Transform) 기술자를 128bit의 이진 코드로 변환한 후 BoF 방법에 의하여 추출된 짧은 후보 리스트에 대하여 변환한 코드들간의 거리를 비교하는 방법을 제안하고 성능을 분석하였다. 1500장의 원본 이미지들에 대한 실험을 통하여 기존의 BoF 방법과 비교하여 근-복사 이미지 검출 정확도가 4% 향상됨을 보였다.

목차

요약
Abstract
1. 서론
2. BoF(Bag of Feature)
3. HE
4. SIFT 기술자 이진화를 통한 근-복사 이미지 검출
5. 실험 및 분석
6. 결론 및 향후 연구 방향
References

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0