메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제16권 제1호
발행연도
2011.1
수록면
39 - 46 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
클러스터링은 주어진 데이터 집합을 균일한 특성을 가지는 몇 개의 그룹으로 묶는 대표적인 비교사 학습 방법 중 하나로 지금까지 다양한 형태의 알고리듬이 개발되어 다양한 응용 분야에서 사용되어 왔다. 이 중 fuzzy c-means (FCM)는 분할 기반의 클러스터링 기법에 속하는 알고리듬으로 1970년대에 정립된 이후 지금까지 사용되고 있는 대표적인 클러스터링 알고리듬 중의 하나이다. 하지만 FCM에는 여러 가지 문제점이 있으며 이를 해결하기 위해 지금까지도 다양한 FCM의 변형이 제안되고 있다. 이 논문에서는 먼저 FCM의 문제점을 살펴보고 이를 해결하기 위해 제안된 방법들을 통해 연구 방향을 제시하고자 한다. FCM의 문제점을 해결하고자 하는 대부분의 FCM 변형은 주어진 문제 영역의 지식을 활용하고 있다. 하지만 이 논문에서는 문제 영역을 한정하지 않고 모든 문제에 적용할 수 있는 일반적인 방안을 제시하는데 초점을 둔다. 제시하는 방안은 앞으로 더 많은 연구가 필요하지만 클러스터링을 연구하고자 하는 이들에게 최근의 연구 동향과 더불어 출발점을 제시할 수 있을 것으로 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (40)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0