메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제13권 제2호
발행연도
2008.3
수록면
41 - 50 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
모바일 환경하에의 RFM 기법을 이용한 개인화된 추천 시스템을 제안한다. 사용자의 평가 자료에 의존하지 않고 사용자에게 번거로운 질의 응답 과정이 없이 묵시적인(Implicity) 방법을 이용하여 고객정보와 구매이력정보를 기반으로 RFM 기법을 이용하여 고객 세분화와 아이템 세분화 통해서 대상 사용자에게 구매 가능성이 높은 아이템을 추천한다. 또한 기존의 추천시스템의 문제점의 해결 방안으로 신규 고객이나 신규 아이템 추천을 고려하여 적용한다. 추천 아이템과 사용자가 구매한 아이템 이력 데이터를 비교히여 추천된 아이템이 중복 추천을 제거하였고 현업에서 사용하는 데이터 셋을 구성하여 실험을 통해서 효용성과 타당성을 입증 및 평가하여 개인화된 일대일 웹 마케팅을 실현하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 제안 시스템
Ⅳ. 시스템 구현
Ⅴ. 결론 및 향후 과제
참고문헌
저자소개

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0