메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박진희 (대구한의대학교) 피수영 (대구가톨릭대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제20권 제5호
발행연도
2015.10
수록면
61 - 69 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
매일 각종 모바일 디바이스와 온라인, 소셜네트워크서비스 등에서 쏟아지는 데이터로 인해 정보의 홍수를 넘어 과부하 상태에 있다. 이미 생성되어 있는 기존 정보들도 있지만 시시각각 새롭게 생겨나고 있는 정보들이 헤아릴 수 없을 정도이다. 연관분석은 이러한 정보들 속에서 나타나는 항목의 발생 빈도수가 최소 지지도보다 큰 빈발항목집합(Frequent Item set)을 찾는 방법이다. 항목의 수가 많아짐에 따라 규칙의 수도 기하급수적으로 늘어나므로 원하는 정보를 찾기가 어려운 단점이 있다. 따라서 본 논문에서는 트랜잭션데이터 집합을 Boolean 변수 아이템으로 나타내었다. 논리함수를 간소화하는데 사용되는 Quine-McKluskey의 방법으로 알고리즘화하여 각 항목에 가중치를 부여한 WT-알고리즘을 제안한다. 제안한 알고리즘은 항목의 개수와 관계없이 간략화가 가능한 장점으로 인하여 불필요한 규칙을 감소시켜 데이터마이닝 효율을 향상시킬 수 있다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. WT-알고리즘을 적용한 규칙감축
4. 실험 및 결과분석
5. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-530-002004651