메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최상일 (Dankook University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제21권 제9호(통권 제150호)
발행연도
2016.9
수록면
11 - 18 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a gas classification method using combined features for an electronic nose system that performs well even when some loss occurs in measuring data samples. We first divide the entire measurement for a data sample into three local sections, which are the stabilization, exposure, and purge; local features are then extracted from each section. Based on the discrimination analysis, measurements of the discriminative information amounts are taken. Subsequently, the local features that have a large amount of discriminative information are chosen to compose the combined features together with the global features that extracted from the entire measurement section of the data sample. The experimental results show that the combined features by the proposed method gives better classification performance for a variety of volatile organic compound data than the other feature types, especially when there is data loss.

목차

Abstract
I. Introduction
II. Gas Classification Using Combined Features
III. Experimental Results
IV. Conclusions
REFERENCES

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-001405439