메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이규식 (고려대학교) 윤지원 (고려대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제22권 제12호
발행연도
2016.12
수록면
646 - 653 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
해외여행시장은 매년 가파르게 성장하고 있는 산업중 하나이며 2016년 11조의 시장을 형성하고 있다. 거대한 시장형성과는 달리 해외여행상품 추천에 대한 국내연구는 전무한 상태이다. 많은 상품 추천 방법들이(협업적 필터링, 내용기반 필터링) 기존 구매 내역을 대상으로 하거나 혹은 상품의 유사성을 이용한 연구들이 주를 이루고 있다. 이러한 연구들은 연산할 데이터의 양이 많아질 경우 속도의 저하와 데이터가 충분히 확보되지 못한 상황 하에서는 좋은 성능을 보여주지 못하고 있다. 해외 여행상품의 특성상 1-2년에 한번정도의 구매패턴과 상품들의 가격대가 상대적으로 높으며, 동일 상품의 구매가 거의 없는 특징이 있기 때문에 일반적인 상품추천 시스템의 고객 프로파일링 방법으로는 적용에 한계가 있다. 이에 웹사용성(Web Usage Mining)을 통한 고객 프로파일링 기법, 데이터의 희소성 문제를 해결하기 위한 연관규칙 알고리즘과 규칙 기반 알고리즘을 결합하여 고속의 상품 추천시스템 방법을 제안한다. 본 논문에서는 연관규칙 방법에서 가장 많이 사용되어지는 Apriori 방법, 규칙기반 방법(Rule Base) 과 실제 여행사의 웹로그를 사용하여 46%라는 높은 추천 성능의 결과를 검증하였으며, 상품의 개수와 고객의 수가 상품추천 처리 속도에 영향을 주지 않으며, 실제 커머셜한 환경 하에서도 1초이내에 상품을 추천해줄 수 있는 결과를 보여준다.

목차

요약
Abstract
1. 서론
2. 관련 연구 및 제안방법
3. 시스템의 구현 및 설계
4. 실험 및 결과
5. 결론 및 향후 연구방향
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-569-001860169