메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임수창 (Sunchon National University) 김승현 (Sunchon National University) 김연호 (Sunchon National University) 김도연 (순천대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제21권 제1호
발행연도
2017.1
수록면
144 - 150 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 데이터의 지능적 처리 및 정확도 향상을 위해 딥러닝 기술이 응용되고 있다. 이 기술은 다층의 데이터 처리레이어들로 구성된 계산 모델을 통해 이루어지는데, 이 모델은 여러 수준의 추상화를 거쳐 데이터의 표현을 학습한다. 딥러닝의 한 부류인 컨볼루션 신경망은 인간 행동 추정, 얼굴 인식, 이미지 분류, 음성 인식 같은 연구 분야에서 많이 활용되고 있다. 이미지 분류에 좋은 성능을 보여주는 컨볼루션 신경망은 깊은 학습망과 많은 부류를 이용하면 효과적으로 분류율을 높일수 있지만, 적은 부류의 데이터를 사용할 경우, 과적합 문제가 발생할 확률이 높아진다. 따라서 본 논문에서는 컨볼루션 신경망기반의 소부류의 분류을 위한 학습망을 제작하여 자체적으로 구축한 이미지 DB를 학습시키고, 객체를 분류하는 연구를 실험 하였으며, 1000개의 부류를 분류하기 위해 제작된 기존 공개된 망들과 비교 실험을 통해 기존 망보다 평균 7.06%이상의 상승된 분류율을 보여주었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안하는 CNN기반 학습 Network
Ⅳ. 실험 및 결과
Ⅴ. 결론
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-002127809