메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김해동 (고려대학교) 김준홍 (고려대학교) 박민식 (고려대학교) 조수현 (고려대학교) 강필성 (고려대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제43권 제4호
발행연도
2017.8
수록면
276 - 287 (12page)
DOI
10.7232/JKIIE.2017.43.4.276

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this paper, we propose insider threat detection methods based on user behavior modeling and novelty detection algorithms. Although traditional insider treat detection methods focus on the rule-based approaches built by domain knowledge of experts, it turns out that they are neither flexible nor robust. Recently, machine learning-based approaches have been highlighted as an alternative to rule-based approaches because data driven detection system can be more applicable to actual systems. To do so, we first design the user behavior model that transforms log records of user activities, inappropriate for machine learning algorithms, into numerical vectors to encode user behaviors to instances. Then we apply variable selection methods and novelty detection algorithms to efficiently detect the rare insider treats or malicious (suspicious) activities. Experimental results support that the proposed framework can work well for severally imbalanced data sets in which there are only a few insider threats although no domain experts’ knowledge is provided.

목차

1. 서론
2. 문헌연구
3. CERT 데이터 및 이상치 탐지 방법
4. 실험결과
5. 결론
참고문헌

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-530-001173473