메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김인중 (한동대학교) 나기현 (한동대학교) 양소희 (한동대학교) 장재민 (한동대학교) 김윤종 (한동대학교) 신원영 (한동대학교) 김덕중 (더블유쇼핑)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.8
발행연도
2017.8
수록면
803 - 812 (10page)
DOI
10.5626/JOK.2017.44.8.803

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
T-커머스는 양방향 디지털 TV를 기반으로 양방향 데이터방송 기술을 활용하여 상거래를 하는 기술융합형 서비스이다. 채널 번호와 판매상품이 제한된 환경에서 T-커머스의 매출을 극대화 하기 위해서는 각 제품의 시간대별 경쟁력을 고려하여 매출이 최대화 되도록 프로그램을 편성해야 한다. 이를 위해, 본 논문에서는 딥러닝을 이용해 T-커머스에서 각 상품을 각 시간대에 편성하였을 때의 매출을 예측하는 방법을 제안한다. 제안하는 방법은 심층신경망을 이용해 판매 상품과 시간대, 주차, 휴일 여부, 그리고 날씨를 입력 받아 실제 방송으로 편성했을 때 기대되는 매출을 예측한다. 그리고, 통계적 모델과 SVD (Singular Value Decomposition)를 적용하여 판매 데이터의 편중 및 희박성 문제를 완화한다. 실제 T-커머스 운영자인 (주)더블유쇼핑의 판매 기록 데이터에 대하여 실험하였을 때 실제 매출과 예측치의 차이가 0.12의 NMAE(Normalized Mean Absolute Error)를 보여 제안하는 알고리즘이 효과적으로 동작함을 확인하였다. 제안된 시스템은 (주)더블유쇼핑의 T-커머스 시스템 적용되어 방송 편성에 활용되었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 매출 예측 시스템의 구성
4. 심층신경망을 이용한 상품별/시간별 매출 예측
5. 통계기반 상품별/시간별 매출 예측
6. 실험
7. 결론 및 향후 개선 방향
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0