메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Noo-Ri Kim (Sungkyunkwan University) Kyoungmin Kim (Sungkyunkwan University) Jee-Hyong Lee (Sungkyunkwan University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.17 No.4
발행연도
2017.12
수록면
329 - 336 (8page)
DOI
10.5391/IJFIS.2017.17.4.329

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose an approach for sentiment analysis in microblogs that learns patterns of syntactic and sentimental word transitions. Because sentences are sequences of words, we can more accurately analyze sentiments by properly modeling the sequential patterns of words in sentimental sentences. However, most previous research has focused on just extending feature sets using n-grams, POS tags, polarity lexicons, etc., without considering sequential patterns. Our proposed approach first identifies groups of words that have similar syntactic and sentimental roles, called SIGs (similar syntactic and sentimental information groups). We then build HMMs using the SIGs as hidden states for the initialization. The SIGs function as the prior knowledge of formative elements of sentimental sentences for HMMs. By using the SIGs, HMMs can start with informative hidden states and more precisely model the transition patterns of words in sentimental sentences with robust probability estimation. For the performance evaluation, we compare the proposed approach with existing ones using HCR dataset. The result shows that the proposed approach outperforms the previous ones in various performance measures.

목차

Abstract
1. Introduction
2. Related Work
3. Proposed Approach
4. Experiment and Evaluation
5. Conclusion
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-001712798