메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김영박 (고려대학교) 김형중 (고려대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제19권 제1호
발행연도
2018.1
수록면
141 - 147 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 기업에서 채용 전형 시 진행되는 인성시험 결과 데이터를 기반으로, 입사 3년 미만의 조기 퇴사자를 분석하였다. 예측 모형은 적합성 및 향후 활용성을 고려하여 제조(manufacture)직군과 R&D직군 2개 그룹으로 구분하여 분석하였으며, 독립변수 선택은 전진(stepwise)선택법에 따라 직군별로 유의미한 독립변수를 선택하였다. 예측 모형은 지도학습(supervised learning) 방법 중 로지스틱 회귀분석 알고리즘을 선택하였으며, 과잉적합(overfitting) 또는 과소적합(underfitting)을 방지하고자 교차 검증(cross validation)을 통해 예측 모형을 훈련시켰다. 혼동행렬(confusion matrix)을 통해 2개 그룹의 정확도(accuracy)를 확인하였으며, 조기 퇴직에 가장 영향을 많이 미치는 요인으로 제조직군에서는 ‘몰입’, R&D직군에서는 ‘반사회성’ 항목으로 확인되었다. 기존 퇴직 관련 연구는 설문 방식으로 데이터를 수집하고, 퇴직과 관련성이 높은 요인을 확인하는데 집중하였다면, 본 연구는 채용 전형 시 진행되는 인성 결과 분석을 통해 향후에도 지속 가능한 조기 퇴직 예측 모형을 제시했다는 면에서 의의를 갖는다.

목차

[요약]
[Abstract]
Ⅰ. 서론
Ⅱ. 로지스틱 회귀분석 개요
Ⅲ. 선행연구
Ⅳ. 조기 퇴직 예측 모형 구축
Ⅴ. 조기 퇴직자 예측 모형 구축 결과
Ⅵ. 결론 및 향후 연구 방향
참고문헌

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001758055