메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤호준 (광운대학교) 이강인 (광운대학교) 정용식 (광운대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제67권 제2호
발행연도
2018.2
수록면
239 - 247 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Adaptive Beamforming (ABF) algorithm, which is a typical jammer suppression algorithm, guarantees the performance on the assumption that the jamming characteristics of the TDS (Training Data Sample) are stationary, which are obtained immediately before and after transmitting the pulse signal. Therefore, effective jammer suppression can not be expected when the jamming characteristics are non-stationary. In this paper, we propose a new jammer suppression algorithm, of which power spectrum fluctuates fast. In this case, we assume that the location of the jammer station is fixed during the processing time. By applying the MPM (Matrix Pencil Method) to the jamming signal in TDS, we can estimate jammer parameters such as power and incident angle, of which the power will vary fast in time or range bins after TDS. Though we assume that the jammer station is fixed, the estimated jammer’s incident angle has an error due to the noise, which degrades the performance of the jammer suppression as the jammer power increases fast. Therefore, the jammer’s incident angle should be re-estimated at each range bin after TDS. By using the re-estimated jammer’s incident angle, we can construct new covariance matrix under the non-stationary jamming environment. Then, the optimum weight for the jammer suppression is obtained by inversing matrix estimation method based on the matrix projection with the estimated jammer parameters as variables.
To verify the performance of the proposed algorithm, the SINR (signal-to-interference plus noise ratio) loss of the proposed algorithm is compared with that of the conventional ABF algorithm.

목차

Abstract
1. 서론
2. 관련이론
3. 시뮬레이션 결과
5. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0