메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
전준영 (가천대학교) 황소윤 (가천대학교) 윤영미 (가천대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제21권 제3호
발행연도
2018.03
수록면
369 - 381 (13page)

이용수

DBpia Top 0.5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Nowadays a personalization algorithm is gaining huge attention. It gives users selective information which is helpful and interesting in a deluge of information based on their past behavior on the internet. However there is also a fatal side effect that the user can only get restricted information on restricted topics selected by the algorithm. Basically, the personalization algorithm makes users have a narrower perspective and even stronger bias because users have less chances to get views of opponent. Eli Pariser called this problem the ‘filter bubble’ in his book. It is important to understand exactly what a filter bubble is to solve the problem. Therefore, this paper shows how much Google’s personalized search algorithm influences search result through an experiment with deep neural networks acting like users. At the beginning of the experiment, two Google accounts are newly created, not to be influenced by the Google’s personalized search algorithm. Then the two pure accounts get politically biased by two methods. We periodically calculate the numerical score depending on the character of links and it shows how biased the account is. In conclusion, this paper shows the formation process of filter bubble by a personalization algorithm through the experiment.

목차

ABSTRACT
1. 서론
2. 관련연구
3. 실험방법
4. 실험결과
5. 결론
REFERENCE

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001915090