메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Van Quan Nguyen (전남대학교) Linh Van Ma (전남대학교) Jinsul Kim (전남대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제19권 제4호
발행연도
2018.4
수록면
789 - 799 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이 논문에서는 이러한 산업 단지 시스템에서의 비정상적인 동작이 일어날 때, 시간 계열의 데이터를 분석하기 위하여 Big 데이터를 이용한 접근을 기반으로 하는 머신 러닝을 보여줍니다. Long Short-Term Memory (LSTM) 네트워크는 향상된 RNN버전으로서 입증되었으며 많은 작업에 유용한 도움이 되었습니다. 이 LSTM 기반 모델은 시간적 패턴뿐만 아니라 더 높은 레벨의 시간적 특징을 학습 한 다음, 미래의 데이터를 예측하기 위해 예측 단계에 사용됩니다. 예측 오차는 예측 인자에 의해 예측 된 결과와 실제 예상되는 값의 차이입니다. 오차 분포 추정 모델은 가우스 분포를 사용하여 관찰 스코어의 이상을 계산합니다. 이러한 방식으로, 우리는 하나의 비정상적 데이터의 개념에서 집단적인 비정상적 데이터 개념으로 바뀌어 갑니다. 이 작업은 실패를 최소화하고 제조품질을 향상시키는 Smart Factory의 모니터링 및 관리를 지원할 수 있습니다.

목차

[요약]
[Abstract]
Ⅰ. Introduction
Ⅱ. Related Works
Ⅲ. System Overview
Ⅳ. Experiments
Ⅴ. Conclusion
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-002043284