메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤소영 (Pukyong National University) 윤성대 (Pukyong National University)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제22권 제5호
발행연도
2018.5
수록면
715 - 721 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
모바일 기기의 확산으로 소셜 네트워크 서비스나 전자상거래 사이트의 사용자 수가 급증하고 있고 사용자들이 남긴 데이터의 양도 기하급수적으로 증가하고 있다. 그로 인해 전자 상거래 기업들은 사용자들이 남긴 방대한 양의 데이터로부터 어떻게 유용한 정보를 추출할 것인가 하는 과제를 갖게 되었다. 이러한 문제를 해결하기 위해 추천 시스템에 빅 데이터 처리 기법을 적용한 다양한 연구들이 이루어지고 있다. 본 논문에서는 Apache Spark 플랫폼에서 Tag가중치를 적용한 협업 필터링 기법을 사용한 추천방식을 제안한다. 제안하는 기법은 추천의 정확성을 높이기 위해 전처리 과정에서 Tag 데이터를 정제하고 아이템을 분류한 후 아이템 평가값에 기간 정보와 Tag 가중치를 적용하여 사용한다. RDD(Resilient Distributed Dataset)를 생성한 후 아이템 유사도와 예측값을 구하고 사용자에게 아이템을 추천한다. 실험을 통해 제안 하는 기법이 대량의 데이터를 빠르게 처리하고 추천의 적합성도 향상되는 것을 확인하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. Apache Spark을 이용한 추천기법
Ⅳ. 실험 및 평가
Ⅴ. 결론 및 향후 연구 방향
REFERENCES

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0