메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
민승인 (서울대학교) 손찬규 (서울대학교) 이관중 (서울대학교)
저널정보
한국전산유체공학회 한국전산유체공학회지 한국전산유체공학회지 제23권 제2호
발행연도
2018.6
수록면
32 - 43 (12page)
DOI
10.6112/kscfe.2018.23.2.032

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Surface roughness should be taken into account when numerically predicting the aircraft icing shape since it affects the underlying physics of the frozen surface. Empirical correlation equation which introduces the uniform value of roughness based on experimental results has been widely used due to its simplicity and limitations of numerical methods for applying the physical model. Through this paper, the physical roughness models that present the roughness height varying depending on the state of the surface is introduced. Also, the differences between each model are compared, and the physical roughness model applicable to RANS based aircraft icing code is proposed. When applying the model, the analytical solution for the film thickness is derived based on the modified governing equation. Then, through the force equilibrium equation, the maximum bead height and minimum film height are computed. Subsequently, surface roughness and surface state are determined by comparing with the film thickness. For the validation of the model, the roughness, heat convection and shapes were compared with numerical results with empirical correlation and experimental results. The changes in roughness height and heat convection were evident, but the shape was not significantly different from the numerical correlation results. Specifically, the reason for the change in roughness and heat convection is discussed. Finally, the qualitative discussion is made for the little change in shape, and the necessity of the model was presented compared with the result of empirical correlation.

목차

1. 서론
2. 연구내용
3. 연구결과
4. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-559-003157974