메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박재선 (고려대학교) 김준홍 (고려대학교) 김형석 (고려대학교) 모경현 (고려대학교) 강필성 (고려대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제44권 제4호
발행연도
2018.8
수록면
249 - 258 (10page)
DOI
10.7232/JKIIE.2018.44.4.249

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The Electrical die sorting (EDS) test is performed to discriminate defective wafers for the purpose of improving the yield of the wafers during the semiconductor manufacturing process, and wafer maps are generated as a result. Semiconductor manufacturing process and equipment engineers use the patterns of the wafer map based on their knowledge to judge the defective wafer and estimate the cause. We use convolutional neural network which demonstrate good performance in the image classification. The convolutional neural network is used as a classification model of which the image of wafer map itself as input and whether the image is good or bad as output. While previous studies have used hand-crafted features for wafer map-based fault detection, the methodology used in this study is that the convolutional neural network learns the features useful for classification, it has the advantage of integrating knowledge. We show that the proposed classifier has better prediction accuracy than the conventional machine learning based techniques such as multilayer perceptron and random forest empirically by experiments on the data collected in the actual semiconductor manufacturing process.

목차

1. 서론
2. 선행 연구
3. 실험 설계
4. 실험 결과
5. 결론
참고문헌

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0