메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mun Myong Choe (Pyongyang University of Science & Technology) Hun Chol Kang (Pyongyang University of Science & Technology) In Chul Kim (Pyongyang University of Science & Technology) Hai Su Li (Yanbian University) Ming Gen Wu (Yanbian University) Im Shik Lee (Pyongyang University of Science & Technology)
저널정보
한국잡초학회·한국잔디학회 Weed&Turfgrass Science Weed&Turfgrass Science Vol.6 No.1
발행연도
2017.3
수록면
28 - 31 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The mutation rate of proline in the position 197 (Pro197) in acetohydroxy acid synthase (AHAS) is highest among sulfonylurea (SU) herbicide-resistance mutants. Therefore, it is significant to investigate the resistance mechanism for the mutation and to develop the herbicides specific to the mutants. SU herbicide resistance mechanism of the mutants, 197Ser, 197Thr and 197Ala, in AHAS were targeted for designing new SU-herbicide. We did molecular dynamics (MD) simulation for understanding SU herbicide-resistance mechanisms of AHAS mutants and designed new herbicides with docking and MD evaluations. We have found that mutation to 197Ala and 197Ser enlarged the entrance of the active site, while 197Thr contracted. Map of the root mean square derivation (RMSD) and radius gyrations (Rg) revealed the domain indicating the conformations for herbicide resistant. Based on the enlarging-contracting mechanism of active site entrance, we designed new herbicides with substitution at the heterocyclic moiety of a SU herbicide for the complementary binding to the changed active site entrances of mutants, and designed new herbicides. We confirmed that our screened new herbicides bonded to both AHAS wild type and mutants with higher affinity, showing more stable binding conformation than the existing herbicides.

목차

ABSTRACT
Introduction
Materials and Methods
Result
Summary
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-523-000139190