메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Alanazi Rayan (Dankook University) Yunmook Nah (Dankook University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.7 No.6
발행연도
2018.12
수록면
478 - 488 (11page)
DOI
10.5573/IEIESPC.2018.7.6.478

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The high demand for big data applications, such as the Internet of Things (IoT), healthcare, business, and academia, as well as government, fosters the creation of large-scale cloud data centers. Cloud data centers contain thousands of physical machines (PMs), so resource management is necessary for allocating the tremendous amount of data to them. Knowing the workload demand in advance enables control of those resources, saving energy, reducing CPU and memory usage, and improving service. Workload prediction can be used to determine how many resources need to be allocated in the future. In this paper, we propose machine learning–based techniques to predict the daily operational workload. The proposed approach can predict the amount of power consumption (PC) and the number of PMs required to fulfill the demands of the cloud data center. Workload prediction accuracy varies based on the prediction methods used and the type of workload. In this work, we investigate three different methods: polynomial regression, support vector regression, and random forest regression (RFR). Considering both accuracy and computation time, results show that RFR provides the best performance, in our case, with a minimum root-mean-square error of 11.68 for PMs and 4869.08 for PC prediction. The computation time solidifies our selection with 2 seconds training time in all instances.

목차

Abstract
1. Introduction
2. Literature Review
3. Methodology
4. Experiment and Results
5. Conclusion and Future Work
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-569-000333329