메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍지훈 (숭실대학교) 최현영 (숭실대학교) 이완곤 (숭실대학교) 박영택 (숭실대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.46 No.2
발행연도
2019.2
수록면
131 - 140 (10page)
DOI
10.5626/JOK.2019.46.2.131

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 인터넷의 발전으로 정보의 양이 늘어나면서 대용량 지식베이스를 이용한 연구에 관심이 많아지는 추세이다. 또한 지식베이스가 다양한 연구에 많이 활용됨에 따라 지식베이스를 완성하는 연구가 진행되고 있다. 하지만 지식베이스 내 오류 트리플을 검출하는 연구가 부족하다. 본 논문에서는 지식베이스 내의 오류 트리플을 검출하기 위해 임베딩 알고리즘을 사용하여 임베딩을 진행한 뒤 클러스터링 한 임베딩 모델과, 트리플 분류의 대표적인 알고리즘인 4가지의 릴레이션 모델을 활용하는 것을 제안한다. 또한, 싱글 임베딩 모델들의 결과를 사용한 임베딩 앙상블 모델과 싱글 릴레이션 모델들의 결과를 사용한 릴레이션 앙상블 모델을 생성하여 모델 검증 지표를 통해 오류 트리플 검출 결과를 비교 측정하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 연구 내용
4. 실험
5. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0