메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정지수 (세종대학교) 지민규 (세종대학교) 고명현 (세종대학교) 김학동 (세종대학교) 임헌영 (세종대학교) 이유림 (세종대학교) 김원일 (세종대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제24권 제1호
발행연도
2019.1
수록면
77 - 86 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 머신 러닝 기술을 이용하여 과거의 수집된 문서를 분석하고 이를 바탕으로 문서를 분류하는 방법을 제안한다. 특정 도메인과 관련된 키워드를 기반으로 데이터를 수집하고, 특수문자와 같은 불용어를 제거한다. 그리고 한글 형태소 분석기를 사용하여 수집한 문서의 각 단어에 명사, 동사, 형용사와 같은 품사를 태깅한다. 문서를 벡터로 변환하는 Doc2Vec 모델을 이용해 문서를 임베딩한다. 임베딩 모델을 통하여 문서 간 유사도를 측정하고 머신 러닝 기술을 이용하여 문서 분류기를 학습한다. 학습한 분류 모델 간 성능을 비교하였다. 실험 결과, 서포트 벡터 머신의 성능이 가장 우수했으며 F1 점수는 0.83이 도출되었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 이전 연구
Ⅲ. 제안 방법
Ⅳ. 실험 결과 및 논의
Ⅴ. 결론
참고문헌 (References)

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-567-000432907