메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sanghyeon Lee (Gangneung–Wonju National University) Moonsik Kang (Gangneung–Wonju National University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.8 No.5
발행연도
2019.10
수록면
373 - 379 (7page)
DOI
10.5573/IEIESPC.2019.8.5.373

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As object recognition technology has developed recently, various technologies have been applied to autonomous vehicles, robots, and industrial facilities. However, the benefits of these technologies are not reaching the visually impaired, who need it the most. In this paper, we proposed an object detection system for the blind using deep learning technologies. We use voice recognition technology in order to know what objects a blind person wants, and then to find the objects via object recognition. Furthermore, a voice guidance technique is used to inform sightimpaired persons as to the location of objects. The object recognition deep learning model utilizes the Single Shot Multibox Detector (SSD) neural network architecture, and voice recognition is designed through speech-to-text (STT) technology. In addition, a voice announcement is synthesized using text-to-speech (TTS) to make it easier for the blind to get information about objects. The control system is based on the Arduino microprocessor. As a result, we implement an efficient object-detection system that helps the blind find objects in a specific space without help from others, and the system is analyzed through experiments to verify performance.

목차

Abstract
1. Introduction
2. Related Work
3. The Proposed Object Detection System Implementation
4. Performance Evaluation
5. Conclusion
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-569-001222287