메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서영웅 (그리노이드) 박승영 (강원대학교) 김명진 (위메프) 임성빈 (H Energy)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.46 No.11
발행연도
2019.11
수록면
1,165 - 1,173 (9page)
DOI
10.5626/JOK.2019.46.11.1165

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 우리나라의 최대 수요 전력 부하가 급격히 증가함에 따라 정전 확률이 올라가고 있다. 이에 대응하기 위해 energy storage system (ESS)에 저장한 전력을 활용하여 최대 수요 전력을 저감하는 ESS 운영 스케줄링 기법이 연구되고 있다. 수요 전력 정보를 미리 알고 있다면, ESS에 저장된 전력과 앞으로 발생할 수요 전력을 모두 고려하여 최적의 ESS 운영 스케줄링 기법을 적용할 수 있을 것이다. 그러나, 최대 수요 전력은 상대적으로 짧은 시간 구간에서만 발생하며 발생 시간도 일정하지 않아 예측이 매우 어렵다. 따라서, 미래의 수요 전력 정보를 미리 알고 있어야만 구현 가능한 최적의 ESS 운영 스케줄링기법은 실질적으로 적용이 어렵다. 본 논문에서는 과거에 측정된 수요 전력 정보만을 이용하는 ESS 운영스케줄링 기법을 제안하였다. 구체적으로, 과거에 측정된 수요 전력과 이에 대응되는 ESS의 최적 방전 전력을 입 · 출력 데이터로 활용하여 long short-term memory (LSTM) 신경망을 훈련하고 이를 ESS 운영스케줄링에 적용하였다. 제안 기법의 유효성을 검증하기 위해, 4곳의 전력 수용가들에 대한 수요 전력 데이터를 이용하여 실험을 수행하였다. 구체적으로, 제안 기법은 정확한 전력 수요 정보를 미리 알고 있어야만 구현 가능한 최적 운영스케줄링 기법 대비 최대 약 82.42%까지 연간 최대 수요 전력 감소를 달성할 수 있음을 확인하였다.

목차

요약
Abstract
1. 서론
2. 최적의 최대 수요 전력 저감 기법
3. 제안하는 최대 수요 전력 저감 기법
4. 성능 평가
5. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0