메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유남조 (Hankuk University of Foreign Studies) 이은애 (Hankuk University of Foreign Studies) 정범진 (Seoul National University of Science and Technology) 김동식 (Hankuk University of Foreign Studies)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제23권 제4호
발행연도
2019.12
수록면
258 - 265 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
에너지의 생산 효율성을 증가시키기 위해 최근 스마트그리드 기술 중 지능형 검침 시스템(AMI, advanced metering infrastructure)의 개발이 활발히 진행되고 있다. 전력 소비 데이터를 분석하고 소비 패턴을 예측하는 일은 AMI에서 핵심적인 부분이다. 본 논문에서는 수집된 전력 소비 데이터를 분석하고 발생할 수 있는 오류들을 정리하였으며 소비 패턴을 월별로 k-means 군집화 알고리즘을 사용하여 분석하였다. 또한 deep neural network를 이용하여 소비 패턴을 예측하였는데, 가구별 하루 전력 사용량 예측의 어려움을 극복하기 위하여 전력 사용량을 100개의 군집으로 분류하여 이 군집의 하루 평균으로 다음날 군집의 평균을 예측하였다. 실제 AMI에서의 전력 데이터를 사용하여 오류들을 분석하였으며 군집화 방법을 도입하여 성공적으로 전력 소비 예측이 가능하였다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 전력 소비 데이터 분석
Ⅲ. 전력 소비 패턴 분석
Ⅳ. 딥러닝을 이용한 전력 소비 패턴 예측
Ⅴ. 실험 결과
Ⅵ. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-056-000378307