메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
박구용 (서울대학교) 김윤식 (서울대학교) 조남익 (서울대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2019 추계학술대회
발행연도
2019.11
수록면
219 - 222 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
영상 잡음 제거 알고리즘은 잡음으로 오염된 영상으로부터 잡음이 제거된 깨끗한 영상을 추정하여 복원하는 연구이다. 기존의 모델 기반 방법의 영상 잡음 제거 알고리즘은 영상을 복원하는 과정에서 최적화 문제를 풀어야 한다는 단점과 매개변수를 직접 선택을 해주어야 한다는 단점을 가진다. 본 논문에서는 딥러닝을 이용한 학습기반 방법의 영상 잡음 제거 연구를 소개한다. 먼저, 신경망의 구축을 위하여 신경망의 구성 요소는 Instance Normalization 과 컨볼루션 신경망을 이용한 모델을 제안하였고, 여러 연구 분야에서 좋은 성능을 보이는 UNet 구조를 전체적인 구조로 차용하였다. 신경망의 학습을 위하여 DnCNN 에서 제안한 잡음을 학습하는 잔여 학습 기법을 채택하였고, 기존의 영상 잡음 제거 알고리즘의 단점인 결과 영상이 흐릿해지는 현상을 보완하기 위하여 생성적 적대 신경망 학습 방법을 적용하였다. 본 논문에서 제안한 신경망을 이용한 잡음 제거 영상의 결과가 기존의 연구 방법들 보다 인지적인 측면에서 좋은 결과를 보임을 확인하였다.

목차

요약
1. 서론
2. 본론
3. 실험
4. 결론 및 향후 연구 방향
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-000348458