메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전자통신연구원 [ETRI] ETRI Journal ETRI Journal 제42권 제2호
발행연도
2020.2
수록면
247 - 257 (0page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Spatial experiences in route finding, such as the ability of finding low‐traffic routes, exert a significant influence on travel time in big cities; therefore, the spatial experiences of seasoned individuals such as taxi drivers in route finding can be useful for improving route‐finding algorithms and preventing using routes having considerable traffic. In this regard, a spatial experience‐based route‐finding algorithm is introduced through ontology in this paper. To this end, different methods of modeling experiences are investigated. Then, a modeling method is chosen for modeling the experiences of drivers for route finding depending on the advantages of ontology, and an ontology based on the taxi drivers’ experiences is proposed. This ontology is employed to create an ontology‐based route‐finding algorithm. The results are compared with those of Google maps in terms of route length and travel time at peak traffic time. According to the results, although the route lengths of route‐finding method based on the ontology of drivers’ experiences in three cases (from nine cases) are greater than that based on Google maps, the travel times are shorter in most cases, and in some routes, the difference in travel time reaches only 10 minutes.

목차

등록된 정보가 없습니다.

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0