메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Chompoonoot Kasemset (Chiang Mai University Chiang Mai) Chawis Boonmee (Chiang Mai University Chiang Mai) Masahiro Arakawa (Nagoya Institute of Technology)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.19 No.1
발행연도
2020.3
수록면
228 - 241 (14page)
DOI
10.7232/iems.2020.19.1.228

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Traffic congestion is a critical problem in many big cities when expansion of traffic systems is implemented to catch up with the increasing demand for road transportation. The policy to shift routes to avoid traffic congestion is one policy that can be supported by traffic information systems. A traffic information sign is one of the solutions that provide traffic information to drivers (users) for selecting routes. Infrastructure for physical signs needs investment, so the optimal number and location of signs should be appropriate for maximizing the effectiveness in reducing traffic congestion. Firstly, a mathematical model for the location of traffic signs was proposed in this study. Then optimal solutions were evaluated using simulation tests. Application of the proposed method is presented for solving the case study of Chiang Mai University’s traffic network. The optimal solutions were to assign two signs on roads with high departure flows and high possibility to change directions. The simulation results present ranges of the probability for changing directions that can reduce the departure flows at the bottleneck gate. When the flows at the bottleneck gate were reduced, the traffic in this area was shown to be less congested. Moreover, utilizations of gates were more balanced.

목차

ABSTRACT
1. INTRODUCTION
2. PRELIMINARIES
3. PROPOSED MATHEMATICAL MODEL
4. CASE STUDY
5. DISCUSSION
6. CONCLUSION
REFERENCES

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-530-000536159