메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박현균 (인제대학교) Subrata Bhattacharjee (인제대학교) Prakash Deekshitha (인제대학교) 김초희 (인제대학교) 최흥국 (Inje University)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제23권 제4호
발행연도
2020.4
수록면
539 - 548 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Deep learning technology is currently being used and applied in many different fields. Convolution neural network (CNN) is a method of artificial neural networks in deep learning, which is commonly used for analyzing different types of images through classification. In the conventional classification of histopathology images of prostate carcinomas, the rating of cancer is classified by human subjective observation. However, this approach has produced to some misdiagnosing of cancer grading. To solve this problem, CNN based classification method is proposed in this paper, to train the histological images and classify the prostate cancer grading into two classes of the benign and malignant. The CNN architecture used in this paper is based on the VGG models, which is specialized for image classification. However, color normalization was performed based on the contrast enhancement technique, and the normalized images were used for CNN training, to compare the classification results of both original and normalized images. In all cases, accuracy was over 90%, accuracy of the original was 96%, accuracy of other cases was higher, and loss was the lowest with 9%.

목차

ABSTRACT
1. 서론
2. 실험 데이터 및 개발 환경
3. 제안한 방법
4. 실험 결과 및 고찰
5. 결론
REFERENCE

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000580392