메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Dong Won Lee (Yonsei University) Hee Soo Lee (Sejong University) Kyong Joo Oh (Yonsei University)
저널정보
계명대학교 자연과학연구소 Quantitative Bio-Science Quantitative Bio-Science Vol.39 No.1
발행연도
2020.5
수록면
25 - 31 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Diversification of the modern financial market has led to an increase in the importance of the stock market index. Trend of the stock market at large can be identified through the analysis of the stock market index. Movements of stock indices serve as a key measure for investors while trading individual stocks and play an important role in establishing basic asset allocation strategy. Currently, in the field of computer science, research on data prediction through machine and deep learning is being actively conducted. Using these algorithms, research on financial time-series data is being conducted in the financial domain. Similar to other time series data, stock market indices have typical characteristics such as regularity, wavelength, and noise. In this study, we focus on the time-series characteristics of stock indices by adopting the low-pass filter as a method of denoising data, rather than simply analyzing the index using basic deep learning. Through this research, we aim to increase the predictivity of stock price index using the ensemble model of the low-pass filter and Long Short- Term Memory algorithm (LSTM) and empirically analyze the result through KOSPI200 stock index data. The result of the studies shows that proposed model had surpassed other denoising LSTM models and simple LSTM model in every test period. In conclusion, further studies in denoising data can be resulted in improvement of prediction in financial area.

목차

ABSTRACT
1. Introduction
2. Methodology
3. Proposed Model
4. Data Analysis
5. Conclusion
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0