메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임송원 (서울과학기술대학교) 박구만 (서울과학기술대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제25권 제3호
발행연도
2020.5
수록면
386 - 398 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 물체인식 딥러닝 모델을 구성하는데 필요한 데이터 레이블링 과정을 하나의 프로그램에서 사용할 수 있는 Annotation 툴을 개발했다. 프로그램의 인터페이스는 파이썬의 기본 GUI 라이브러리를 활용하였으며, 실시간으로 데이터 수집이 가능한 크롤러 기능을 구성하였다. 기존의 물체인식 딥러닝 모델인 Retinanet을 활용하여, 자동으로 Annotation 정보를 제공하는 기능을 구현했다. 또한, 다양한 물체인식 네트워크의 레이블링 형식에 맞추어 학습할 수 있도록 Pascal-VOC, YOLO, Retinanet 등 제각기 다른 학습 데이터 레이블링 형식을 저장하도록 했다. 제안하는 방식을 통해 국산 차량 이미지 데이터셋을 구축했으며, 기존의 물체인식 딥러닝 네트워크인 Retinanet과 YOLO 등에 학습하고, 정확도를 측정했다. 차량이 진입하는 영상에서 실시간으로 차량의 모델을 구별하는 정확성은 약 94%의 정확도를 기록했다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. GUI 프로그램 구조
Ⅲ. 프로그램 구현 방법 및 Retinanet 학습 모델
Ⅳ. 영상 데이터 셋 생성
Ⅴ. 실험 및 평가
Ⅵ. 결론
참고문헌 (References)

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0