메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yongjae Gwak (Konkuk University) Chanho Jeong (Konkuk University) Jong-hyuk Roh (Electronics and Telecommunications Research Institute) Sangrae Cho (Electronics and Telecommunications Research Institute) Wonjun Kim (Konkuk University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.3
발행연도
2020.6
수록면
203 - 211 (9page)
DOI
10.5573/IEIESPC.2020.9.3.203

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Face recognition has been adopted widely for real-world applications because of its convenience and contactless nature. On the other hand, forged faces for spoofing attacks can be fabricated easily using a variety of materials, such as pictures, high-resolution videos, and printed masks, etc., which pose a great threat to face-based recognition systems. Therefore, face antispoofing has become an essential technique to achieve high-level security. Although many studies have explored effective features to discriminate live faces from fake ones, even with deep neural networks, they still struggle to grasp meaningful differences from a single image because of the sophisticated spoofing attacks with various media. This paper proposes a novel method for face anti-spoofing based on stereo facial images. Because the three-dimensional structure of a live face clearly yields a structural difference in the image pair taken by a stereo camera, whereas significant differences do not occur in fake faces of two-dimensional planes, this paper proposes to learn the differences of left-right image pairs in the latent space of a deep neural network. One important advantage of the proposed method is that the structural difference is encoded implicitly in a nonlinear manner through the deep architecture without explicitly computing the disparity. The experimental results on a constructed dataset revealed the proposed method to be effective for diverse spoofing attacks.

목차

Abstract
1. Introduction
2. Related Work
3. Proposed Method
4. Experimental Results
5. Conclusion
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-000684333