메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
With the ability to learn rules from training data, the machine learning model can classify unknown objects. Atthe same time, the dimension of hyperspectral data is usually large, which may cause an overfitting problem. In this research, an identification methodology of tea diseases was proposed based on spectral reflectance andmachine learning, including the feature selector based on the decision tree and the tea disease recognizer basedon random forest. The proposed identification methodology was evaluated through experiments. Theexperimental results showed that the recall rate and the F1 score were significantly improved by the proposedmethodology in the identification accuracy of tea disease, with average values of 15%, 7%, and 11%, respectively. Therefore, the proposed identification methodology could make relatively better feature selection and learnfrom high dimensional data so as to achieve the nondestructive and efficient identification of different teadiseases. This research provides a new idea for the feature selection of high dimensional data and the nondestructiveidentification of crop diseases.

목차

등록된 정보가 없습니다.

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0