메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제11권 제6호
발행연도
2020.1
수록면
23 - 28 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
인터넷상의 소통을 위해 댓글 시스템은 필수적이다. 하지만 온라인상의 익명성을 악용하여 타인에 대한 부적절한 표현 등의 악성 댓글 또한 존재한다. 악성 댓글로부터 사용자를 보호하기 위해 악성/정상 댓글의 분류가 필요하고 이는 텍스트 분류로 구현할 수 있다. 자연어 처리에서 텍스트 분류는 중요한 주제 중 하나이고 최근 BERT 등 pretrained model을 활용한 연구와 GCN, GAT 등의 그래프 구조를 활용한 연구가 활발히 진행되고 있다. 본 연구에서는 실제 공개된 댓글에 대해 BERT, GCN, GAT 을 활용하여 댓글 분류 시스템을 구현하고 성능을 비교하였다. 본 연구에서는 그래프 기반 모델을 사용한 시스템이 BERT 대비 높은 성능을 보여주었다.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0