메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이다빈 (숭실대학교) 황규백 (숭실대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제26권 제8호
발행연도
2020.8
수록면
373 - 377 (5page)
DOI
10.5626/KTCP.2020.26.8.373

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
유전자 발현 프로파일링은 질병 연구에 유용하다. Library of Integrated Network-Based Cellular Signatures 프로그램 연구진은 전체 인간 유전자 발현 정보의 약 80%를 포함하는 소수의 유전자(랜드마크 유전자) 발현량만을 측정한 뒤 다른 유전자(목표 유전자)의 발현량을 예측하는 효율적인 프로파일링 기법을 개발했다. 본 논문에서는 오토인코더로 랜드마크 유전자의 비선형 특징을 추출한 후 이에 기반하여 목표 유전자의 발현량을 예측하는 방법을 제안한다. 이 방법은 943개의 랜드마크 유전자와 9,520개의 목표 유전자로 구성된 111,009개의 유전자 발현 프로파일에 대한 실험에서 기존의 심층 신경망과 비교했을 때 약 95%의 목표 유전자에 대해 예측 오류를 감소시켰으며, 감소의 폭은 평균적으로 약 7%였다. 이러한 결과는 오토인코더 기반의 비선형 특징 추출이 랜드마크 유전자로부터 목표 유전자의 발현량을 예측하는 데 기여할 수 있음을 시사한다.

목차

요약
Abstract
1. 서론
2. 오토인코더 기반 특징 추출
3. 심층 신경망 기반 목표 유전자 발현량 예측
4. 심층 신경망 기반 목표 유전자 발현량 예측
5. 결론
References

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0