메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
정근호 (국민대학교) 윤상민 (국민대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 하계학술대회
발행연도
2020.7
수록면
14 - 17 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
단안 영상에서의 깊이 추정은 주어진 시점에서 촬영된 2차원 영상으로부터 객체까지의 3차원 거리 정보를 추정하는 것이다. 최근 딥러닝 기반으로 단안 RGB 영상에서 깊이 정보 추정에 유용한 특징 맵을 추출하고 이를 이용해서 깊이를 추정하는 모델들이 기존 방법들의 성능을 넘어서면서 관련된 연구가 활발히 진행되고 있다. 또한 Attention Model 과 같이 특정 특징 맵의 채널 혹은 공간을 강조하여 전체적인 네트워크의 성능을 개선하는 연구가 소개되었다. 본 논문에서는 깊이 정보 추정을 위해 사용되는 특징 맵을 강조하기 위해서 Attention Model 을 추가한 AutoEncoder 기반의 깊이 추정 네트워크를 제안하고 적용 부분에 따른 네트워크의 깊이 정보 추정 성능을 평가 및 분석한다.

목차

요약
1. 서론
2. 깊이 영상 추정 네트워크
3. 실험
4. 결론 및 향후 연구
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-001082848