메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김홍비 (호서대학교) 이태진 (호서대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제30권 제4호
발행연도
2020.8
수록면
593 - 603 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
네트워크의 발전에 따라 악성코드 생성도구가 유포되는 등으로 인해 악성코드의 출현이 기하급수적으로 증가하였으나 기존의 악성코드 탐지 방법을 통한 대응에는 한계가 존재한다. 이러한 상황에 따라 머신러닝 기반의 악성 코드 탐지 방법이 발전하는 추세이며, 본 논문에서는 머신러닝 기반의 악성 코드 탐지를 위해 PE 헤더에서 데이터의 feature를 추출한 후 이를 이용하여 autoencoder를 통해 악성코드를 더 잘 나타내는 feature 및 feature importance를 추출하는 방법에 대한 연구를 진행한다. 본 논문은 악성코드 분석에서 범용적으로 사용되는 PE 파일에서 확인 가능한 DLL/API 등의 정보로 구성된 549개의 feature를 추출하였고 머신러닝의 악성코드 탐지 성능 향상을 위해 추출된 feature를 이용하여 autoencoder를 통해 데이터를 압축적으로 저장함으로써 데이터의 feature를 효과적으로 추출해 우수한 정확도 제공 및 처리 시간을 2배 단축에 성공적임을 증명하였다. 시험 결과는 악성코드 그룹 분류에도 유용함을 보였으며, 향후 SVM과 같은 분류기를 도입하여 더욱 정확한 악성코드 탐지를 위한 연구를 이어갈 예정이다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 제안 모델
IV. 시험 결과
V. 결론
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-001142270