메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김효관 (한국폴리텍대학) 황원용 (한국폴리텍대학)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제13권 제4호
발행연도
2020.8
수록면
306 - 311 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 대량의 데이터를 활용한 모델 개발 시 다양한 라이브러리를 갖춘 파이썬 언의의 성능 향상방법을 다룬다. 파이썬 언어는 엑셀과 같은 스프레드시트 형태 데이터 처리 시 Pandas 라이브러리를 사용한다. 데이터 처리 시파이썬은 기가단위 이하 데이터 처리 시에는 인-메모리로 연산하여 성능 측면에서 크게 이슈가 없다. 하지만 기가단위 이상 데이터 처리 시 성능 이슈가 발생한다. 이에 본 논문은 데이터 처리 시 Pandas와 같이 사용할 수 있는 Dask 라이브러리를 활용하여 단일 클러스터 및 다중 클러스터에서 실행 작업을 분산처리 가능한 방법을 소개한다. 실험은 동일사양의 하드웨어에서 간단한 지수산출 모델을 Pandas만 사용해서 처리하는 속도와 Dask를 같이 사용해서 처리하는 속도를 비교한다. 본 논문은 파이썬의 장점인 다양한 라이브러리를 쉽게 사용할 수 있다는 점을 유지하면서 성능측면에서도 대량의 데이터를 CPU 코어들이 분산 처리하여 모델을 개발할 수 있는 방법을 제시한다.

목차

요약
Abstract
1. 서론
2. 파이썬 전처리 기술
3. 시스템 및 모델 정의
4. 모델 구현
5. 실험 결과
6. 결론
REFERENCES

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-001177046