메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신명우 (부경대학교 안전공학과) 서용윤 (부경대학교 안전공학과)
저널정보
한국안전학회 한국안전학회지 한국안전학회지 제34권 제2호
발행연도
2019.1
수록면
48 - 55 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
For preventing the accidents generated from the chemical materials, thus far, MSDS (Material Safety Data Sheet) data have been made to notify how to use and manage the hazardous and chemical materials in safety. However, it is difficult for users who handle these materials to understand the MSDS data because they are only listed based on the alphabetical order, not based on the specific factors such as similarity of characteristics. It is limited in representing the types of chemical materials with respect to their characteristics. Thus, in this study, a lots of MSDS data are visualized based on relationships of the characteristics among the chemical materials for supporting safety managers. For this, we used the textmining algorithm which extracts text keywords contained in documents and the Self-Organizing Map (SOM) algorithm which visually addresses textual data information. In the case of Occupational Safety and Health Administration (OSHA) in the United States, the guide texts contained in MSDS documents, which include use information such as reactivity and potential risks of materials, are gathered as the target data. First, using the textmining algorithm, the information of chemicals is extracted from these guide texts. Next, the MSDS map is developed using SOM in terms of similarity of text information of chemical materials. The MSDS map is helpful for effectively classifying chemical materials by mapping prohibited and hazardous substances on the developed the SOM map. As a result, using the MSDS map, it is easy for safety managers to detect prohibited and hazardous substances with respect to the Industrial Safety and Health Act standards.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0