메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
공동수 (경기대학교 바이오융합학부) 민정기 (경기대학교 바이오융합학부) 노성유 (국립환경과학원 물환경연구부)
저널정보
한국물환경학회 한국물환경학회지 한국물환경학회지 제34권 제5호
발행연도
2018.1
수록면
514 - 536 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
GPI (Group Pollution Index) using 29 indicator groups of Korean benthic macroinvertebrates was proposed in 1992, a higher category taxa-level index developed for rapid field assessment of organic water pollution. This study was performed to revise the assessment scheme of GPI based on taxonomic performance and ecological information accumulated since 1992. The original GPI was renamed SBMI (Simple Benthic Macroinvertebrates Index), and SBMI was based on saprobic valency of 26 indicator groups composed of higher category taxa (mainly family ~ phylum) excluding some genus or species-level taxa. SBMI revealed highly significant correlation with concentration of 5-day biochemical oxygen demand ($BOD_5$) (correlation coefficient r = 0.78, n = 569 sites), total suspended solids (r = 0.69), and total phosphorus (r = 0.77). Also, SBMI revealed strong correlation with Shannon-Weaver's species diversity (r = -0.85), Margalef's species richness (r = -0.85), and McNaughton's dominance (r = 0.83). Determination coefficient of SBMI to concentration of water quality items and values of community indices such as species diversity was 3 ~ 8 % and approximately 11 ~ 14 % higher than that of GPI, respectively. Correlation between SBMI and water quality factors or community indices such as species diversity did not reveal much difference compared to that of species-level indices, such as BMI (Benthic Macroinvertebrates Index) and ESB (Ecological Score of Benthic Macroinvertebrates). SMBI is a simple-qualitative index with higher category taxa easily identified, and is applicable for rapid field assessment of water environment impairment.

목차

등록된 정보가 없습니다.

참고문헌 (38)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0